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Abstract. In this paper we present a new method for the calculation of the rotational 
averages which arise in the theory of spectroscopic radiation-molecule interactions in fluid 
media. Based upon the principles of irreducible Cartesian tensor analysis, the method 
presented allows us to express results either in the usual reducible form, or directly in 
terms of linearly independent sets of irreducible tensor products. For interactions up to 
and including rank 3 in the molecular response (or non-linear susceptibility) tensor, the 
rotational averages cast in terms of irreducible tensor products are considerably simpler 
in structure than the corresponding results expressed in reducible form. 

1. Introduction 

In the study of molecule-radiation interactions it is often the case that the principal 
observable, for example the quantum transition rate or scattering intensity, depends 
upon the orientation of sample mo1ecul.e~ with respect to the radiation field. Within 
the framework of molecular quantum electrodynamics, the rate and intensity parameters 
associated with such interactions are normally described in terms of the Fermi golden 
rule. Most processes are incoherent, in the sense that they do not depend on exact 
phase-matching between the incident and any emergent photons, and the observable 
can be expressed in terms of the square modulus of a quantum-mechanical probability 
amplitude, Mjj ,  constructed from a contraction of two tensors. Adopting the implied 
summation convention for repeated tensor indices, we can express Mfi for a process 
which involves n photon-molecule interactions occurring at any one centre as a series 
of the form 

Here the first term, comprising the contraction of two rank-n tensors, represents the 
leading term, usually the electric dipole approximation, for the n photon-molecule 
interaction, whilst successive terms involving higher-rank tensor contractions represent 
higher-order multipolar corrections to the probability amplitude: the tensors Til...in and 
Tll...im+l are the corresponding molecular response tensors, and Sil,.,in and S ~ l , , , i ~ + l  are 
the polarisation tensors constructed from products of radiation field vectors [ 11. 

Taking the square modulus of the matrix element gives 

I ~ f i I ~  = Si,...i,zsj,...j,~ ~ i ~ . . . i , ?  Tj j , ,  + Sil...i,,sj,...j,,+l Ti l...in Tjl.,.j,,+l 
- -  

+ S~I...i,SJ!l...jn+l Tt1...i,? Tjl.,.j,,+l + . . * (1.2) 

0305-4470/89/010049+ 12$02.50 @ 1989 IOP Publishing Ltd 49 



50 D L Andrews and N P Blake 

If the sample is a fluid or gas it is necessary to account for the random orientation 
of the molecules within the sample. To this end it is usually necessary to rotationally 
average a result derived for the case where the laboratory and molecular frames are 
fixed with respect to one another. For such systems, the leading term for the observable, 
A('"), can be written as 

where the angle brackets denote the rotational average. Thus, for example, single- 
photon absorption ( n  = 1) requires a rank-2 tensor average, two-photon absorption 
and Raman scattering ( n  = 2) require a fourth-rank rotational average, and three-photon 
absorption and hyper-Raman scattering ( n  = 3) require elucidation of the sixth-rank 
rotational average [2-91. 

In the normal trigonometric method for deriving the appropriate averages, the 
molecular-fixed parameters are first transformed into a molecular-fixed frame, denoted 
in this paper by Greek indices, through the relation 

where lhiip represents the direction cosine of the angle between the molecule-fixed Aj  
axis and the laboratory-fixed ip axis, as may be expressed in terms of Euler angles q, 
6 and 4. The required even-rank rotational average is then obtained by inserting 
equation (1.4) into (1.3) and then integrating over the Euler angles, i.e. 

f 2 w  f 7 r  f 2 r r  

As n increases, the trigonometric evaluation of results of this form becomes a problem 
of rapidly escalating difficulty. Each index can represent either x, y or z, and hence 
there are 34" separate integrals to evaluate. The problem of isotropically averaging 
tensor quantities of this type has often been addressed in the limited context of particular 
physical processes. In earlier papers, Andrews ef a1 [7, 101 developed a systematic, 
non-trigonometric, matrix-based procedure, giving explicit results up to rank 8 ( n  = 4) 
whilst the logistics of the problem recently led Wagnikre [SI and McClain et a1 [9] to 
evaluate the integrals computationally, obtaining results up to rank 10 ( n  = 5 ) .  

In 0 2 of this paper it is shown that, in the non-trigonometric method of rotational 
averaging, expressions of the form of equation (1.3) can be further simplified by casting 
both the molecular and polarisation tensors into their embedded irreducible Cartesian 
forms. This method has two distinct advantages. First, the results are cast in terms 
of a linearly independent irreducible basis set in which each component can be 
characterised by its rotational transformation properties: previous averaging treatments 
have generally necessitated subsequent irreducible tensor development in order to 
perform a full symmetry analysis. Second, the transformation to an irreducible basis 
set means that the rotational averaging matrices are brought into block diagonal form, 
simplifying the results considerably. In § 3, development of these results illustrates 
their correspondence with conventional rotational averages, while in § 4 it is demon- 
strated that the procedure can be extended to tensor averages of odd rank, so facilitating 
evaluation of the rotational averages of the higher-order correction terms in equation 
(1.2). 
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2. Calculational procedure 

The procedure for calculation of the rotational averages of the type given in equation 
(1.3) involves consideration of the linear transformation properties of the tensors 
involved. Since the integrand in (1.5) must be rotationally invariant, it forms a basis 
for a totally symmetric irreducible representation of the rotation-inversion group SO(3). 
We can ascertain the exact form of this basis by expressing each tensor as a sum of 
its embedded irreducible tensor components [ 11-13]?. 

In general, a reducible tensor of rank n can be written as a sum of irreducible parts 
of weights j (0 6 j G n ) ,  each of which is associated with a multiplicity N;' given by [ 141 

1 2 n  -3 k - j -2 
k 

where 0 s k s [( n - j)/3]. Each irreducible tensor has (2j  + 1) independent components, 
so that the total number of components is 

C(2 j+ l )N ' , J '=3"  
J 

as required. The reduction of the tensors in (1.2) into irreducible parts thus takes the 
following form: 

N ( J !  
n n  

Til,.,i,,= 
j = O  p = l  

We now consider the substitution of these results into (1.2), where there are index 
contractions involving coupling between the tensors represented by (2.3) and (2.5), 
and also between those represented by (2.4) and (2.6). It is well known that the 
coupling of two tensors of weights j and j" results in a tensor represented by weights 
j" in the range 1 j - j"l G j "  G j + j". However, the n-fold contraction of two tensors of 
rank n must give rise to a scalar result; therefore products of the type T ~ ~ ~ ~ ~ S { ~ . ' ~ ~ ~ n )  will 
only be non-vanishing when j * = O ,  and this can only occur when j=j". Similar 
reasoning shows that j '= j"', and hence the substitution of equations (2.3)-(2.6) into 
(1.2), must give the result 

Equation (2.7) can be Le-expressed in a natural form [12,13] through the use of the 

t Note that in [12] the last two column headings oftable 111 should be interchanged, and q,lnl becomes Tal,). 
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mapping formulae 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Here G ~ ~ \ ~ l ) ; n i , , , n ,  represents a rank-( n + j) -invariant symmetry preserving mapping from 
the weight-j, rank-j subspace into a weight-j, rank-n irreducible subspace. Substitution 
of these identities into (2.7) gives 

( 1  T i  l...z,,sil...in 1') 
N$' , vy  

( j . p )  ( 0 . 9 )  - ( J ' ; 9 )  = ( G  ~ ~ ~ . ~ ~ )  ; k l . . . k , ~ k l ~ . . k J ~ i ~ ~ l . . . i 2 ~ ; / , , . , / J ~ ~  /,.../,. 
j , j '=O P A  r,r 

(2.12) 

In order to develop (2.12) further, we note that by projecting the two invariant 
mappings given expression in (2.8) and (2.9) to their dual bases, through use of the 
metric tensor g,",", i.e. ( 

G ! P ' ? b , k ,  k, =c g p p  ( n J ) e ( O , p )  kl k, ,t ,  I,, (2.13) 
P 

(2.14) 

it is possible to conduct an n-fold index contraction to give a new mapping between 
two rank-j subspaces [12,13]: 

(2.15) 

The invariant tensor mapping operator E:' k, ,m,  represents a mapping from the 
rank-j space to the natural rank-j, and hence weight-j, subspace. By exploiting the 
idempotent nature of this operator when it operates upon rank-j natural tensors, 
substitution of equations (2.13)-(2.15) into (2.12) gives the result 

G k ,  - ( 0 , P  1.,.11 1 i n  G ( 0 , ' )  11 i , , .m~  m, = r Etl' k,,m, nt, . 

(2.16) 

The isotropic average can now be directly evaluated, by taking the weight-0 isotropic 
part of the tensor product l ~ i ' p ~ J f ~ l J  t )  and contracting the result with s t l ' r ~ , i ~ ' ~ J ) .  As 
before, the isotropic part of such tensor products is only non-vanishing when j = j', 
and the relation takes the form 

(2.17) ( / , P I  (1 4 )  (0) (1 .4 i  
( f k ,  k , f ( ,  'f, ) 8,~  t r ,  ~ , ~ r ~  1 , ( 2 j + l ) - ' ~ t ?  k,,fl  I, 

which on substitution into (2.16) gives 

(2.18) 

This is the central result for the rotational average, as expressed in terms of natural 
tensors. It is important to note that it is only those tensor products where all weights 
are the same that contribute to the average. 
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Equation (2.18) can be suitably embedded in the computationally more convenient 
rank-n tensor space by use of the following identity proved in appendix 1: 
t ( 1 . P )  A ,  A,fhl’  (1 4 )  A , s k ,  ( I s r )  k,Skl’  ( J  k, = (gpq (n .1)  grs ( n 3 J ) ) - 1  p..P) I A n  FJ.4) AI  S(Jzr )  k i  kn S(JsS)  ki  k ,  (2.19) 
which is valid provided no elements of the metric tensor g“,’) are zero. (In fact zeros 
only occur for n > 3.) Inserting (2.19) into (2.18) gives the desired final result: 

T A I  ( J . p )  A,  T(J,q) A ,  A n  s(J kl’  r ,  k , , S k , ’  - ( I  k,, * (2.20) 
Here the Greek indices indicate, as before, reference to a molecule-fixed frame in 
which the molecular response tensors are rotation invariant. Since the only matrix 
elements which are non-zero are those in which the weights of the molecular response 
tensors and the radiation field tensors are the same, the rotational averaging matrix 
takes on a block diagonal form. The rotational averaging matrix coefficients can readily 
be calculated with the aid of table 1 which gives the explicit form for g E X J )  up to rank 
4 [ll-13,151. 

Table 1. Explicit form of the metric gb”, ’) up to rank 4. 

2 
2 
2 

3 
3 

3 

3 

4 
4 

A 

A 

4 

2 
1 
0 

3 
2 

1 

0 

4 
3 

2 

1 

0 

1 
2 
3 
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As mentioned above, the result given in (2.20) is correct so long as neither gb",.') 
nor g;:." is zero. Although this condition is satisfied for n 3, for n = 4 the result is 
more complicated. In this case g E J )  are zero when j = 1 , 2  and q = N/"'+ 1 - p .  For 
these elements the following identity can be used to re-express (2.18) in an alternative 
embedded irreducible form: 

where g(4,j j  is the inverse metric defined by 

(2.22) 

However, the fact that the contributions Tyl!pi4 T y ~ , ~ ~ ~ ) t l - p )  vanish means that this 
average cannot be expressed in terms of a linear combination of the quadruply 
contracted tensors of the form T?,!P14TY;.q14. This is verified by the fact that 

into an 
irreducible result of the form Tyl\Y,Ld Ty:f.\4. 

Explicit results for the rotational average of (1.1) up to rank 6 ( n  = 3) are as follows. 

G i O ; ' )  & ( O ; q )  - ( j ; N j n ) + l - p )  
p I , , . ~ d ; h l , , , h J  hl . . ,A, ;pl , . .p~ does not map the tensor product T ~ ~ . p ~ 4 T p ~ . . . p 4  

Rank 2. 

Rank 4. 

(2.23) 

(2.24) 

Rank 6. 

16 16 16 16 1 -4 16 -4 1 
16 256 -64 16 16 16 16 -64 -4 
16 -64 256 16 -4 -64 16 16 16 

16 16 

-4 -4 16 16 16 
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4 
16 
4 
4 

4 
4 

16 
4 

(2.25) 

3. Correspondence with conventional rotational averages 

It is possible to use the principles expounded above to generate earlier results obtained 
in reducible tensor form [2-81. If we convert the natural tensors in (2.18) into their 
reducible forms in rank-n space, through the use of the following inverse mapping 
formulae: 

we find that on substitution of (3.1)-(3.4) into (2.19) we obtain the necessary average 
expressed in terms of reducible tensor isomers, i.e. 

x G ~ ~ q ~ , ; "  u , ~ ~ ~ ,  , . . ~ , , ~ ~ , . . .  u , ~ S / l . . . / , , ~ ~ l , . . m , , ~  ( 3 . 5 )  

As an example, we derive the second-rank iensor average ( n  = 1). Using the 
information given in table 2 together with (3.5), and using the affine relation 

(3.6) G(O;P) (0.P) 
k l . . . k ~ ~ ; l l . . . l , , ~ k l ~ . . k , ~ ; m l . . . m , ,  =niy,!:,,);m m,, 

Table 2. Tensor mappings for a second-rank tensor. 
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By executing the necessary index contractions we find that we can express the result as 

which is the more usual form in which the rotational average appears [7]. Results for 
higher-rank rotational averages can be obtained through the use of (3.5) and the 
necessary mapping formulae given by Coope et a1 [ll-131. Although this method 
affords no calculational advantages over over methods employed to evaluate isotropic 
tensor averages, it serves as a powerful illustration of the use of irreducible Cartesian 
tensor calculus, and may additionally serve as a means of veryifying results. 

4. Rotational averages involving tensor products of odd rank 

Up to this point we have principally been concerned with the calculation of isotropic 
averages involving only the square of the leading term in the probability amplitude. 
However, there are certain chiral effects which arise in connection with linear and 
non-linear light scattering which require the evaluation of odd-rank cross terms [ 16, 171. 
Following a similar method one finds that such averages are given by 

( s i l . . . i , , s j l . . . j n + l  T i l . . . i , t T j l . . . j n + i )  

n 

= C C (2j+ l ) - l g b " , ~ " g ~ ~ ~ ~ ; j ~ ~ ~ i P ~ , ; ~ l . , . p , ~ i l . ~ . i , ; k  - ( o . q )  ,... k ,  
j = O  p , q  s ' , r '  

(4.1) ( 0 ; r ' )  G ( o ; s )  
G ~ l . . . ~ n + l ; h l . . . h i  l l . . . /n+l;i l . . . i ,  T+l...p,, T ~ , . . .  ~ , , + , ~ k ~ . . . k , ~ ~ ~ ~ . . , ~ , , + ~  

which represents the main result in reducible form. The irreducible counterpart of 
equation (4.1) is found to be 

( S i l . . . i , s j l . . . j , r + l  Ti,...i,t Tj ,... j , + , )  

n 
1 ( n ; j )  rr '  ss '  ( n ; j )  

= C C C (2j+1)- gpq  g ( n + l ; j j g ( n + l ; j ) g r s  
j = O  p,q,r,s s',r' 

x ~ ~ , P ~ , ; ~ l . . . ~ n G i , . ~ . i , ; k l . . . k , , ~ b S ~ ~ ~ ~ , , + ~ ; h ~ . . . h ,  - ( 0 . q )  G(0;S') 11 ... l ,>+ l ; i l  ...i, 

(4.2) ( j ; q )  r ( j ; s )  s ( j ; p )  r ( j . r )  x T~l...p,TpI...pn+l k l . . . k n s l l . . : / n + l *  

The rank-3 ( n  = 1) and the rank-5 ( n  = 2) rotational averages have the following 
explicit forms. 

(4.3) 

(4.4) 
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1 
30 

-- - 

5. Derivation of embedded irreducible isotropic averages from reducible isotropic 
averages 

It is possible to verify the results of 5 2  by an alternative method using a matrix 
formalism outlined in part by Andrews and Wilkes [18]. This method expresses each 
scalar T!$:.pl,, Fy:,qi,, in terms of the Qn linearly independent isotropic tensor isomers. 
First, we write the isotropic average as 

where mp4 are numerical coefficients and f ( 2 n s p ) ,  g(2n,q)  denote the rank-2n isotropic 
tensors in the laboratory and molecular frames respectively. Writing 

- 
(5.2) ( 2 n  4 )  

= gAl 'A2,,  T A ~  A,, 

and 
- 

SP = f : 2 n , p )  1 IlnSI1 hSl,,+l 42,I (5 .3)  

it is possible to write the rank-2n average in the form 
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Both the molecular parameters t ,  and the polarisation parameters sp can be re- 
expressed in terms of irreducible tensor products t :  and s: by use of (2.3)-(2.6), leading 
to relations of the form 

Q,, 

t : =  C j r4 ty  ( 5 . 5 )  
, = I  

and 

where j and j - '  constitute index-symmetric numerical matrices of rank Qn. It is thus 
possible to express the rotational average defined in (5.4) as 

For ranks n = 2 and n = 4, averaging the result is trivial since there is only one 
representation for each weight, and consequently ( j - l ) p s  and ( j - l ) , r  are elements of 
2 x 2 and 3 x 3 matrices. This is not the case for rank-6 averaging, however, where 
( j - l ) p s  and ( j - l ) q r  are elements of a 15 x 15 matrix. These elements have previously 
been calculated by Andrews and Wilkes [ 161. 

As an example we again concentrate on the rank-4 average. From (5.5) and appendix 
2 we have 

The inverse relation can be expressed in the form of (5.6) 

( 5 . 8 )  

as follows: 

(5.9) 

Inserting this relation into (5 .7)  gives the isotropic average as 

(5.10) 

which reduces to the earlier result 

6. Conclusion 

(2.23) 

In this paper we have shown how the principles of irreducible Cartesian tensor analysis 
can be used to derive rotational averages for the observables associated with molecular 
processes described in terms of the Fermi golden rule. It has been demonstrated that 
the results are considerably simplified by expressing observables directly in terms of 
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irreducible tensors, thus bringing the rotational averaging matrix into block diagonal 
form. We also have shown how the principles of Cartesian tensor analysis can be used 
to derive the isotropic averages in a reducible form. This has served to verify results 
published in earlier papers, and to facilitate future extension to isotropic averages for 
any higher rank. Although the results given in this paper apply to three-dimensional 
rotational averaging, it would be relatively simple to adapt these results for two- 
dimensional systems by a suitable adaptation of the relevant metric tensors. 
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